- Услуги
- Цена и срок
- О компании
- Контакты
- Способы оплаты
- Гарантии
- Отзывы
- Вакансии
- Блог
- Справочник
- Заказать консультацию
Формирование у слабовидящих детей обобщенных мыслительных действий, посредством которых устанавливаются кратные, простые и мультипликативные отношения между предметами подлине, а также отношения между расстоянием, временем и скоростью, изучалось при выполнении ряда практических действии с предметами: дети сравнивали их по длине, по скорости движения, при этом использовались определенные мерки, соответствующие единицам длины и времени. На основе наглядных данных и результатов своих действий испытуемые составляли арифметические задачи (формулировали условие и вопрос задачи) и решали их.
Анализ результатов показал, что по успешности выполнения заданий в процессе опытного обучения слабовидящих учащихся можно было разделить на четыре группы, выделив тем самым четыре уровня – по степени владения мыслительными действиями, направленными на установление кратных и разностных отношений между объектами по пространственным и временным признакам.Для первого (высшего) уровня было характерно правильное решение задач без какого-либо дополнительного обучения. Дети, достигшие этого уровня, достаточно легко выполняли кратное и разностное сравнение величин по пространственным и временным признакам.
Дети, отнесенные ко второму уровню, первоначально затруднялись в установлении сложных взаимоотношений между такими величинами, как время, скорость, расстояние. При этом они владели умениями сравнивать предметы по длине и сопоставлять действия по их длительности, достаточно легко находили соотношения между целым и частями, понимали взаимообратные отношения между количеством частей и величиной отдельной части.
Выполняя успешно все усложняющиеся задания в процессе опытного обучения, эти дети усвоили взаимоотношения между пространственными и временными признаками и единицами их измерения и в конце обучения правильно решали задачи на установление отношений между расстоянием, временем и скоростью.
Дети, обнаружившие более низкий – третий уровень выполнения мыслительных действий, не научились устанавливать отношения между расстоянием, временем и скоростью. Эти дети достаточно свободно находили отношения целого и частей применительно к пространственной протяженности, когда соответствующие величины было легко выделить и сопоставить (наложение одной полоски бумаги на другую).
Вместе с тем заметные затруднения обнаружились у детей при установлении количества равных частей в определенной длине в тех случаях, когда выделяемая часть не была достаточно наглядно представлена (если она выражалась размером шага и тем более если она была отрезком пути, пройденным в единицу времени). У этих детей наблюдались особые трудности при необходимости мысленного соотнесения двух систем измерения – по расстоянию и по времени, что требовало установления отношения отношений.
Четвертый, низший уровень сформированности изучаемых мыслительных действий наблюдался у детей, которые не умели устанавливать соотношения между частями и целым даже применительно к величинам, наглядно наблюдаемым, не владели методами сравнения величин путем наложения и измерения, у них отсутствовала обратимость действий при переходе от деления на части к делению по содержанию, а также понимание взаимообратной связи между величиной части и количеством частей в целом.
Специальное обучение способам сравнения величин (наложение, измерение), выполнение ряда практических действий на сравнение величин, в которых варьировались размеры части и целого, менялись условия заданий, привели к тому, что дети начали самостоятельно решать соответствующие задачи. Однако переноса усвоенных умений на решение задач с более абстрактными мерками (шагом и тем более отрезком пути, пройденным в единицу времени) не наблюдалось. Прямой зависимости между остротой нарушенного зрения школьников и степенью успешности решения ими задач не отмечалось.
Проведенное Т. П. Назаровой исследование показало, что слабовидящие младшие школьники испытывают большие трудности в решении математических задач, чем их нормально видящие сверстники. Эти трудности обусловлены своеобразием формирования их конкретно-понятийного мышления в условиях неполного развития более элементарных уровней мыслительной деятельности (наглядно-действенного и наглядно-образного).
Такое недоразвитие мышления слабовидящих детей в период раннего и дошкольного детства возникает как следствие нарушенного зрительного восприятия и недостаточного по этой причине предметно-действенного опыта детей. Конкретно-понятийное мышление слабовидящих детей строится на суженной наглядной и действенной основе, но при речевом развитии, близком к нормальному. Вследствие этого мышление приобретает черты формализма.
Мышление слабовидящих детей совершенствуется в процессе их обучения в младших классах школы, однако при этом восполнение пробелов, возникших в дошкольном детстве, происходит неполностью. Оперирование образами с целью установления соотношений между объектами по пространственным и временным параметрам продолжает затруднять слабовидящих детей больше, чем детей с нормальным зрением, даже на рубеже младшего и среднего школьного возраста.
Вместе с тем трудности развития мышления слабовидящих детей могут быть в значительной мере преодолены при правильной организации их деятельности в раннем и дошкольном детстве: при развитии у них способов обследования предметов, их сопоставления по определенным признакам, при формировании у них различных навыков конструирования в условиях проблемных заданий. При этом всемерное обогащение практического опыта детей должно предусматривать развитие их наглядно-действенного и наглядно-образного мышления.
В дошкольных учреждениях и в I классе школы для слабовидящих детей необходима пропедевтика математики, включающая практическое сравнение предметов по разным признакам, установление отношений между целым и частями, использование различных мерок с целью формирования понятия о единице измерения, а также схем, моделирующих отношения между предметами по определенным признакам.
При этом важно соблюдать постепенность в увеличении доли абстрактности, схематичности в применяемых мерках и моделях; последние должны выполнять роль наглядных опор и вместе с тем выражать все усложняющиеся отношения действительности.
Полученные результаты свидетельствуют также о том, что слабовидящие дети, обучающиеся в одном и том же классе, могут значительно различаться по степени сформированности и обобщенности мыслительных действий, необходимых для решения математических задач.